

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

(Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu)
(Accredited by NBA for Civil, EEE, Mech., ECE & CSE
Accredited by NAAC with 'A' Grade)
Puttur -517583, Chittoor District, A.P. (India)

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Electromagnetic Fields (20EE0204) Course & Branch: B.Tech - EEE

Year & Sem: II-B.Tech & I-Sem Regulation: R20

UNIT –I INTRODUCTION TO VECTOR CALCULUS

1	a	Give the cartesian coordinates of the Point who's cylindrical are r=4,	[L3][CO1]	[6M]
	b	φ=45° & Z=2). Two points A (2,2,1) and B (3,-4,2) are given in the cartesian systems. Obtain the vector from A to B and a unit vector directed from A to B.	[L3][CO1]	[6M]
2	a	Find the distance from A (r=4, θ =20° & ϕ =120°) B ((r=2, θ =80° & ϕ =30°)	[L3][CO1]	[6M]
	b	Transfer the cartesian Co-ordinates X=2, Y=1, Z=3 into spherical co-ordinates systems.	[L3][CO1]	[6M]
3.		If $B= y a_x + (x+z) a_y$ and a point Q is located at (-2,6,3) express B in spherical coordinates.	[L3][CO1]	[12M]
4.		Express vector B in cartesian systems. Given $B=10/r$ $a_r+r\cos\theta$ $a_\theta+a_\phi$. Find the B at (-3,4,0).	[L3][CO1]	[12M]
5.	a	Transform the vector field W=10 a_x -8 a_y +6 a_z to cylindrical co-ordinate system at point P (10, -8, 6).	[L3][CO1]	[6M]
	b	Express B= r^2 $a_r + \sin \theta$ a_{ϕ} in the cartesian co-ordinates. Hence obtain B at P (1,2,3).	[L3][CO1]	[6M]
6	a	Given point P (-2,6,3) and A=y a_x +(x+z) a_y . Express A in Cylindrical coordinates.	[L3][CO1]	[6M]
	b	Transform the vector A= 3i-2j-4K at P (x=2, y=3, Z=3) to cylindrical coordinates.	[L3][CO1]	[6M]
7	a	If two vectors re expressed in cylindrical Co-ordinates A=2 $a_r + \pi a_\phi + a_z$, B=- $a_r + 3\pi/2$ a_ϕ -2 a_z . Compute a unit vector perpendicular in the plane containing A & B.	[L3][CO1]	[6M]
	b	The Three fields are given by $A=2a_x - a_z$, $B=2$ $a_x-a_y+2a_z$, $C=2a_x-3a_y+a_z$. Find the scalar and vector triple product.	[L3][CO1]	[6M]
8		Determine the divergence of these vector fields: i) $P=x^{-2}yz \ a_x + xz \ a_z$, ii) $Q=r \sin \phi \ a_r + r^2 \ z \ a_\phi + z \cos \phi \ a_z$ and iii) $T=(1/r^2) \cos \theta \ a_r + r \sin \theta \cos \phi \ a_\theta + \cos \theta \ a_\phi$	[L3][CO1]	[12M]
9		Find the gradient of the following scalar fields: i) $V=e^{-z}\sin 2x\cosh y$, ii) $U=r^2z\cos \phi$ and iii) $W=10r\sin^2\theta\cos\phi$	[L3][CO1]	[12M]
10		Determine the curl of the vector fields: i).P= x^2yz $a_x +xz$ a_z , ii) Q= $r \sin \phi a_r +r^2 z$ $a_\phi +z \cos \phi a_z$ and iii) T= (1/ r^2) $\cos \theta a_r +r \sin \theta \cos \phi a_\theta +Cos\theta a_\phi$	[L3][CO1]	[12M]

<u>UNIT –II</u> STATIC ELECTRIC FIELD

1	a	State and explain Coulomb's law indicating clearly the units of quantities in the equation of force?	[L2][CO2]	[6M]
	b	State and prove Gauss's law and write limitations of Gauss's law?	[L2][CO2]	[6M]
2.	a	Determine the Electric filed intensity at P(-0.2, 0, -2.3) m due to a point charge	[L3][CO2]	[6M]
		of 5 nc at Q (0.2,0.1, -2.5) m in air.		
	b	An infinitely long uniform line charge is located at y=3, Z=5. If ρ_L = 30 n C/m,	[L3][CO2]	[6M]
		find the filed intensity E at i) origin, ii) P(0,6,1) and iii) P(5,6,1)		
3.	a	Line charge density ρ_L = 24 n C/m is located in free space on the line y=1 and Z=2 m Find E at the point P(6,-1,3)	[L3][CO2]	[6M]
	b	Determine the force between the two charge Q_1 =4*10 ⁻⁴ C at A(2,3,4) , Q_2 =-2*10 ⁻⁴ C at B(3,0,3) in vaccum	[L3][CO2]	[6M]
4	a	Find E at (0,0,2) m due to charged circular disc in x-y plane with ρ_S =20 n C/m ² and radius 1m.	[L3][CO2]	[6M]
	b	A circular disc of 10 cm radius is charged uniformly with total charge of 100μc . Find E at a point 20cm on its axis.	[L3][CO2]	[6M]
5		The Electric flux density is given as $D=(r/4) a_r n C/m^2$ in free space. Calculate: The Electric field intensity at $r=0.25 m$, The total charge within a sphere of $r=0.25 m$	[L3][CO2]	[12M]
6		Given that $A=30 e^{-r} a_r-2 z a_z$ in the cylindrical co-ordinates. Evaluate both sides of the divergence theorem for the volume enclosed by $r=2$, $z=0$ and $z=5$	[L3][CO2]	[12M]
7		Find V at P (2,1,3) for the field of two coaxial conducting cones, with V=50 V at θ =30 and V=20 V at θ =50.	[L3][CO2]	[12M]
8	a	An electric potential is given by V= $(60 \sin\theta / r^2)$ v . Find V and E at P(3,60°,25°)	[L3][CO2]	[6M]
	b	In free space $V = x^2y(z+3)$. Find E at $(3, 4, -6)$ and The charge within the cube $0 < x, y, z < 1$.	[L3][CO2]	[6M]
9	a	The potential field in free space is given by $V=(50/r)$, a <r< (spherical="")="" <math="" b="" show="" that="">\rho_v=0 for a<r </r b and find the energy stored in the region a<r </r b</r<>	[L3][CO2]	[6M]
	b	Two pint charges 1.5nC at $(0,0,0.1)$ and -1.5nC at $(0,0,-0.1)$ are in free space. Treat the two charges as a dipole at the origin and find the potential at $p(0.3,0,0.4)$	[L3][CO2]	[6M]
10	a	What is the relation between electric flux density and electric field intensity	[L1][CO2]	[4M]
	b	Define dipole moment?	[L1][CO2]	[2M]
	С	Define an electric dipole?	[L1][CO2]	[2M]
	d	State vector form of coulombs law?	[L1][CO2]	[2M]
	e	Derive Maxwell second equation?	[L1][CO2]	[2M]

<u>UNIT –III</u> <u>CONDUCTORS, DIELECTRICS AND CAPACITANCE</u>

1	a	Derive the continuity equation. What is its physical significance?	[L2][CO3]	[6M]
	b	Derive the point form of ohms law?	[L2][CO3]	[6M]
2		Explain the boundary conditions of two perfect dielectrics materials?	[L4][CO3]	[12M]
3		Explain the boundary conditions between conductor and free space?	[L4][CO3]	[12M]
4	a	In cylindrical coordinates J=10 e ^{-100r} a _{ϕ} A/m ² . Find the current crossing through the region 0.01 <r<0.02 0<z<1="" <math="" and="" intersection="" m="" of="" region="" the="" this="" with="">\phi = constant plane.</r<0.02>	[L3][CO3]	[6M]
	b	An aluminum conductor is 2000 ft long and has a circular cross section with a diameter of 20 mm. If there is a DC voltage of 1.2 V between the ends . Find a) The current density b) The current , C power dissipated form the l=knowledge of circuit theory. Assume σ =3.82 *10 ⁷ mho/m for aluminum.	[L3][CO3]	[6M]
5	a	Find the magnitude of D and P for a dielectric material in which E=0.15 mV/m and χ =4.25.	[L3][CO3]	[6M]
	b	Find the polarization in dielectric material with $\varepsilon_r = 2.8$ if D=3*10 ⁻⁷ C/m ² .	[L3][CO3]	[6M]
6		Explain the phenomenon of polarization when a dielectric slab is subjected to an electric field?	[L4][CO3]	[12M]
7	a	Derive the expression for parallel plate capacitor and capacitance of a co-axial cable?	[L4][CO3]	[6M]
	b	A parallel plate capacitor has an area of 0.8 m ² separation of 0.1 mm with a dielectric for which $\epsilon_r = 1000$ and a field of 10^6 V/m. Calculate C and V	[L3][CO3]	[6M]
8		 Let A=120 Cm², d=5 mm and ε_r=12 for a parallel plate capacitor i) Calculate the capacitance ii) After connecting a 40 V battery across the battery, Calculate E, D, Q and the total stored energy iii) The source is now removed and the dielectric is carefully withdrawn from between. Again, Calculate E, D, Q and the energy iv) What is voltage between the plates. 	[L3][CO3]	[12M]
9		Two parallel conducting discs are separated by distance 5 mm at z=0 and z=5 mm. If V=0 and V=100 v at z=5 mm, find the charge densities on the disc.	[L3][CO3]	[12M]
10	a	Determine whether or not the following potential fields satisfy the Laplace's equation $V=x^2-y^2+z^2$ & ii) $V=r\cos\phi+z$	[L3][CO3]	[6M]
	b	Derive Laplace's and Poisson's Equation.	[L4][CO3]	[6M]

<u>UNIT –IV</u> <u>STATIC MAGNETIC FIELDS</u>

1		Using Biot-savart's law. Find \vec{H} and \vec{B} due conductor of finite length?	[L2][CO4]	[12M]
2	a	Explain maxwell's second equation?	[L2][CO4]	[6M]
	b	State and explain ampere's circuital law?	[L2][CO4]	[6M]
3		Evaluate both sides of the stokes theorem for the filed H=6xy a_x -3y ² a_y A/m and the rectangular path around the region 2 <x<5, -1<y<1,="" <math="" be="" direction="" ds="" let="" of="" positive="" the="" z="0.">a_z.</x<5,>	[L3][CO4]	[12M]
4	a	Find the flux passing the portion of the plane $\phi = \pi/4$ defined by 0.01 <r<0.05 0<z<2="" 2.5="" <math="" a="" along="" and="" axis="" current="" filament="" in="" is="" m="" m.="" of="" the="" z="">a_z direction</r<0.05>	[L3][CO4]	[6M]
		in free space.		
	b	In cylindrical coordinates B= $(2.0/r)$ a _{ϕ} tesla. Determine the magnetic flux ϕ crossing the plane surface defined by $0.5 < r < 2.5$ m and $0 < z < 2$ m.	[L3][CO4]	[6M]
5		In cylindrical co-ordinates A=50 r ² a _z wb/m is a vector magnetic potential in a certain region of free space. Find H, B, J and using J find the total current I	[L3][CO4]	[12M]
		crossing the surface $0 < r < 1$, $0 < \phi < 2\pi$ and $Z = 0$.		
6	a	A Point charge of Q=-1.2 C has a velocity V=(5 a _x +2 a _y -3a _z)m/s. Find the	[L4][CO4]	[6M]
		magnitude of the force exerted on the charge if i) $E=-18~a_x+5~a_y-10~a_z~V/m$ and ii) $B=-4~a_x+4~a_y+3~a_z~T$		
	b	A magnetic field $B=3.5*10^{-2}$ a_z exerts a force on a 0.3 m long conductor along x axis. IF a current of 5 A flows in $-a_x$ direction, determine what force must be applied to hold conductor in position.	[L3][CO4]	[3M]
	С	Determine the force per meter length between two long parallel wires A and B separated by distance 5 cm in air and carrying currents of 40 A in the same direction.	[L3][CO4]	[3M]
7		A rectangular loop in Z=0 plane has corners at $(0,0,0)$, $(1,0,0)$, $(1,2,0)$ and $(0,2,0)$. The loop carries a current of 5 A in a_x direction. Find the total force and torque on the loop produced by the magnetic field B=2 $a_x+2a_y-4a_z$ wb/m ² .	[L4][CO4]	[12M]
8		Derive the expression for self-inductance of solenoid, toroid and coaxial cable	[L4][CO4]	[12M]
9	a	Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical tube of 6 cm diameter. The length of the tube is 60 cm and the solenoid is in air.	[L3][CO4]	[6M]
	b	Find inductance per unit length of a co-axial cable if radius of inner and outer conductors are 1 mm and 3 mm respectively. Assume relative permeability unity.	[L3][CO4]	[6M]
10		Calculate the inductance of a 10 m length of coaxial cable filled with a material for which $\mu_r = 80$ and radii inner and outer conductors are 1 mm and 4 mm respectively.	[L3][CO4]	[12M]

<u>UNIT -V</u> TIME VARYING FIELDS AND MAXWELL'S EQUATIONS

	_			
1		Write Maxwell's equation in good conductors for time varying fields and	[L4][CO6]	[12M]
		static fields both in differential and integral form?		
2		Explain faradays law of electromagnetic induction and there from derive	[L4][CO5]	[12M]
-		maxwell's equation in differential and integral form?		[]
_			FT 435 CO (3	[12]
3		Derive the equation of Continuity for time varying fields?	[L4][CO6]	[12M]
4		Derive an expression for motional and transformer induced emf?	[L4][CO5]	[12M]
5		What is displacement current? Explain physical significance of displacement	[L2][CO6]	[12M]
		current?		
6		Derive expressions for integral and point forms of poynting Theorem?	[L4][CO5]	[12M]
7		Explain faradays law of electromagnetic induction and derive the expression	[43][CO5]	[12M]
		for induced e.m.f.		
8	a	Define skin depth?	[L1][CO5]	[2M]
	b	Define displacement current?	[L1][CO5]	[2M]
	c	State Faraday's law of electromagnetic induction?	[L1][CO5]	[2M]
	d	Write Maxwell equations in time varying fields?	[L1][CO6]	[4M]
	e	Define pointing vector?	[L1][CO5]	[2M]
9		A Parallel plate capacitor with plate area of 5 cm ² and plate separation of	[L3][CO5]	[12M]
		3mm has a Voltage of $50 \sin 10^3$ t volts applied to its plates. Calculate the		
		displacement current Assuming $\varepsilon=2\varepsilon_0$		
10		An area of 0.65 m^2 in the plane Z=0 encloses a filamentary conductor. Find	[L3][CO6]	[12M]
		the induced voltage if B= $0.05 \cos 10^3 t (a_y+a_z)/\sqrt{2} tesla$.		

Prepared by: Dr. J.Gowrishankar Professor/EEE